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Abstract: 
 
Theoretical Methods for the Determination of Mixing 
 
Acceleration driven fluid mixing is studied here from a theoretical point of view. 
Considerable progress has been achieved in the understanding of mix. Theories of 
the authors are reviewed which allow prediction of the edge of the mixing zone, 
in agreement with experimental data. Theories which describe the distribution of 
masses within the mixing region are also reviewed. The theory we present 
describes a chunk mix regime, in which two phases are mixed at a chunk level, 
but for which there is no atomic mixing. Thus the two phases are segregated into 
disjoint regions of space. 
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1  Introduction 
Characterization of mixing rates for acceleration driven flows is important for the 
design of inertial confinement (ICF) targets and the study of astrophysical flows 
modeling supernovae and geophysical flows involving thermal inversion or 
density inversion (e.g. a salt dome) layers. Underprediction of mixing rates from 
many simulation codes relative to experiments and observational data adds to the 
importance of a theoretical investigation. Remarkably, the theoretically predicted 
mixing rates have been in agreement with experiment for some time. In this paper 
we summarize our main results for the theoretical determination of mixing rates, 
with an emphasis on recent improvements which add considerably to the power 
and applicability of these methods. We use these mixing rates to parameterize a 
subgrid mixing model, also presented here. Detailed analytic solutions to this 
model have been known for some time. We present the weakly compressible 
asymptotic expansion (the incompressible limit). We comment on the relation of 
our results to the direct simulation determination of mixing rates. 
 
The outline of our approach can be summarized as: 
1. Bubble merger models to predict bubble growth rate; 
2. Characterization of the Center of Mass (COM) motion to link bubble side mix 

predictions to spike side mix predictions; 
3. Determination of drag as a function of Atwood number, so that arbitrary 

accelerations can be studied; 
4. Analytic determination of leading and below leading order large time 

asymptotics for the edge motion equations; 
5. Mix model (subgrid model) equations; 
6. Determination of an effective diffusion and Reynolds stress term for use in 

reduced models. 
 

2  Bubble merger models 
Bubble merger models predict the penetration rate of fingers of light fluid 
(bubbles) into the heavy fluid. For acceleration driven mixing, it is observed that 
the bubbles increase in size, through a process of bubble competition and merger. 
In this process, advanced bubbles are accelerated relative to the mean bubble 
motion, while retarded ones are held back. Thus the smaller bubbles (also 
generally the retarded ones) become removed from the interface of advancing 
bubbles, while the larger, advanced ones expand to fill the resulting space. In 
1960, Sharp and Wheeler proposed a model to describe this process. The model 
was corrected by Glimm and Sharp (1990, 1997) to include the hydrodynamical 
accelerations (positive and negative) given to advanced and retarded bubbles due 
to their positions relative to the mean bubble penetration height. Such models 
were extended to three dimensions by Oron et al. (2001) and independently by  
Cheng et al. (2002a), with improved predictions. The 3D models predict not only 
the growth rates for the bubble interface (both agree with experiment; Cheng et al. 
is slightly higher); they also predict the bubble height to width ratio. For this 
quantity, the two models are distinctly different in their predictions, see Table 1. 
Agreement of the Cheng et al. model with experimental data is very satisfactory. 



  [Table 1 goes here]  
The bubble dynamic equations are formulated in scaled variables, from which the 

2Agt  dynamic growth has been removed. This being the case, the self similar, late 
time solution appears as a fixed point. In fact, it is a renormalization group (RNG) 
fixed point. 
 
For steady acceleration, i.e. Rayleigh-Taylor (RT) mixing, the bubble penetration 
height bh satisfies the scaling law 2

b bh Agtα= . Four directly measurable 

quantities determine the growth rate constant bα  in this formula. The 
measurements, the relation of these quantities to bα  and the experimental 
validation of this relation are contained in Cheng et al. (2002a).  We list the four 
quantities: (1) Let mt′  be the time to merger for a pair of interacting bubbles. Then 

*
1/ mtω ′=  is the mean inverse time to merger, and thus the mean merger rate. It 

is evaluated at the fixed point. (2) mh′  is the maximum height separation, i.e. the 
height for instantaneous merger, (3) bc  is the speed of a single bubble in a 
periodic array, and (4) k is a geometrical factor giving the increase in radius for a 
single merger event, slightly less than ½. Each of the proceeding is expressed in 
scaled units. Then the fixed point formula for bα  is: 

 
1

( )
4 2b b m

k k
c hα ω ω

+ ′= + .                                (2.1) 

As written, the equation has been verified by direct comparison to experimental 
data, Cheng et al. (2002a). To obtain a closed expression for bα , the above 
quantities are evaluated directly within a statistical model for the bubble dynamics. 
Two quantities define this model: the bubble velocity and the bubble merger 
criteria. The bubble velocity is defined as the sum of a single (periodic array) 
bubble velocity and a bubble interaction term, the “envelope velocity”. The 
bubble velocity as a sum of these two terms has been tested against simulation 
data. The criteria for bubble merger is defined to be the time at which the retarded 
bubble starts to move backwards, using this two term formula for the bubble 
velocity. Note that the bubble interaction term can have either sign, so that a zero 
total velocity is possible. The bubble merger criteria was shown to be an 
insensitive parameter in the model.  
 
From these two inputs, ω  and mh′  are determined. The result is the determination 

0.5 0.6bα ≈ − , in agreement with experimental results. The same formulas yield 
the bubble height to width ratio, cited in Table 1. Since (2.1) depends on two 
parameters, it is important to check it (as we do) on two independent sets of data. 
Specifically, ω  is very sensitive to the bubble width while bα  can mask canceling 
errors betweenω  and mh ′ . 
  
3  Compressible mixing zone dynamics 



The bubble merger model is readily extended to compressible flow. The single 
bubble velocity, bc  in scaled variables, must be determined for compressible flow. 
This quantity affects the envelope velocity and thus the total bubble velocity.  The 
remainder of the analysis is unchanged.  See Chen et al. (1993). This same 
reference shows that bα  increases with increasing values of the dimensionless 

compressibility 2/ hg cλ .  It was also shown that the bubble merger model 

predictions for bα , as corrected in this manner for compressibility, were in good 
to moderate agreement with simulation results. 
 
4  Center of mass motion 
For steady acceleration (Rayleigh-Taylor ) incompressible mixing, the center of 
mass COMZ  of the mixing zone satisfies 2

COM COMZ Agtα= , in accordance with the 
self similar scaling of the flow. 0COMZ ≈  for Atwood numbers 0.8A < . For 

general values of A , the scaling law .COM const Aγα = fits the data. Here the 

constant is determined by the known value 1 / 2sα =  for 1A = (free fall) and an 

assumed value for bα , while 10γ ≈ is insensitive to the data. Thus COMZ  and 

COMα  very efficiently constrain the self similar flow. The COM relation 
introduces a new equation which establishes a link between the bubble and spike 
mixing growth rates. Given a value for COMα , we have determined that the ratio 

/s bα α is a solution of a quadratic equation. Thus spike data can be predicted from 
a knowledge of bubble data. See Glimm et al. (1999) and Cheng et al. (1999 and 
2000). See Fig. 1. 
   [Figure 1 goes here.] 
 
5  Buoyancy drag equations 
A number of authors have considered buoyancy drag equations to describe the 
dynamics of the edge of the mixing zone. These equations are fundamental for all 
models of mix, as the data they supply is of such basic importance. Our version of 
these equations has fewer parameters and greater predictive power than similar 
equations introduced by others. See Cheng et al. (2000). In addition, we have a 
finite drag coefficient in the limit 1A = , as is required on intuitive grounds. The 
equations have the form 

 
2

'
'( ) ( ) ( ) ( 1)
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ii i i i

i i i i i
i

dV C Vk g t
dt Z

ρρ ρ ρ ρ′+ = − − − .         (5.1) 

Note that the density iρ ′ in the drag term in (5.1) is the density of the fluid being 
displaced. This form of drag is taken by classical text books in fluid dynamics, but 
has been incorrectly replaced by iρ , the density of the displacing fluid, by a 
number of workers, leading to a divergent drag coefficient in the limit 1A → . 



Here 1ik =  is an added mass coefficient, iZ  is the penetration distance of the 
mixing zone on side 1i = (bubble) and 2i =  (spike), iV  is the edge velocity and 

iC  is the drag coefficient. Also ( )g t  is the acceleration. 
 
There is only one undetermined parameter in (5.1), namely 1C  (as 2C  is 
determined from 1C  by the COM theory). iC  itself is determined from our bubble 

merger model, or simulations, or from experiment. Substituting the 2
i ih Agtα=  

late time asymptotic solution for RT mixing, we can determine iα  uniquely in 
terms of iC  and conversely. Thus the equation is completely determined by the 
RT data, and in view of  Sec. 4, it is uniquely determined in terms of the RT 
bubble data alone (with exceptions noted above for large A ).  
 
Thus (5.1) can be used to predict Richtmyer-Meshkov (RM) mixing rate 
exponents iθ . The late time RM asymptotics are predicted for the first time from 
the iα  and usually from bα  alone We obtain a zero parameter agreement with 
experiment and with known 1A =  spike limits. See Cheng et al. (2000). 
See Fig. 2. 
 
 [Figure 2 goes here] 
 

 
For ( )g t g=  a constant (steady RT mixing), the large time asymptotic solution of 

the buoyancy drag equation (5.1) is 2| |i iZ Agtα= . The equation cannot be 
integrated in closed form for general t , but a closed form approximate evaluation 
of the next two lower orders (the term proportional to t  and the constant term) 
was obtained. The result exhibited an explicit dependence of these lower order 
terms on the initial conditions, in contrast to the leading order asymptotics, which 
is independent of initial conditions. The result is 
 2

0 0 0 0| ( ) | ( ) | |( ) | |i i i i i i iZ t Ag t t Ag Z t t Zα β α γ= − + − + ,         (5.2) 

where 0iZ  is an initial amplitude, and 0iV  is an initial velocity. We also define 

1/(2 )i ia α=  and 0 0 0(1 | ' |) (1 | ' |)i i i i if a V a V= − +  as a transform of the scaled 

initial velocity ' / | |i i iV V Ag Z= . Then with 
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             (5.3) 

a computation shows that 2i iβ δ=  and 2
i iγ δ= . Note the explicit dependence on 

initial conditions in the lower than leading order terms. 
  
This analysis allows an improved fit and interpretation of experimental data. For 
example the data of Smeeton and Youngs and of Read can be reliably 



distinguished from the leading order asymptotics and the dependence of this data 
on ( 0)Z t = or ( 0)V t =  can be observed. See Fig. 3. 
 
                    [Figure 3 goes here] 
  
Speculations concerning the cause of discrepancy between simulation and 
experiment have focused on three possible explanations: (a) numerical diffusion 
in the untracked simulations, (b) preasymptotic behavior in the simulations, and 
(c) noise in the experiments of a specific spectral power that generates 2t  
modification to the 2t experimental data. Issue (a) is in fact a sufficient 
explanation, see George et al. (2002). It is possible that (b) may be a contributing 
explanation. To explore this possibility, the preasymptotic solutions (5.2) of (5.1) 
will be helpful. Issue (c) is discussed in Glimm et al. (2001).
 
6  Mix model equations 
Two phase flow equations appropriate to a chunk mix regime have been proposed 
and studied in detail, see Glimm et al (1998 and 1999) and related papers. The 
model has several attractive features: it is mathematically stable, i.e. totally 
hyperbolic with real characteristics for time propagation. The equations are 
thermodynamically determinate, using equation of state models for each 
constituent in an unmixed mode. Commonly used mix models fail one or both of 
these properties. In fact a thermodynamically determinate set of equations is often 
achieved by assumption of molecular mix, leading to models which possess a 
single temperature.  
 
The chunk mix equations have been analyzed in great detail, with closed form 
solutions obtained for the incompressible limit, Glimm et al (1998 and 1999). 
Perturbation terms in the weakly compressible limit have been computed in 
closed form through second order in the Mach number, Jin (2001) and Glimm & 
Jin (2001). This is the order for which the incompressible pressure first appears. 
Results for the volume fraction in this limit are displayed in Fig. 4. 
 
 
  [Figure 4 goes here] 
 
Here we discuss new insight regarding closure which has emerged from a study of 
the weakly compressible theory. The equations resemble the Euler equations for 
each fluid considered separately. They are coupled through three interface terms. 
Two of these are a term * /kp zβ∂ ∂  added to the momentum equation for species 
k and a term *( ) /kpv zβ∂ ∂  is added to the energy equation, also for species k . 

Here kβ  is the volume fraction of species k . We use the notation *X  to denote 

the quantity X  averaged over the interface, and kX  to denote a volume average 
of X over the phase volume occupied by species k . Closure assumptions, such as 
neglect of Reynolds stress terms within a single species phase average, and an 
assumed identity of volume and mass weighted averages within a single phase 



average are discussed in Glimm et al. (1998) and earlier papers. The third 
interface term occurs in the (new) interface equation  

 * 0k kv
t z

β β∂ ∂
+ =

∂ ∂
.                                 (6.1) 

. The important closure relations are those for the interface quantities *p  and *( )pv  
and *v . The closure for *( )pv  is highly constrained in terms of the *v  and *p  
closures. These two are also constrained to be convex combinations of the 
corresponding phase quantities, kv  and kp , with convex coefficients x

kµ ′ , ,x v p= . 
We make the hypotheses (appropriate for a chunk mix regime) that there are no 
internal length scales within the mixing layer, so that the ' sµ  must be functions 
of dimensionless variables, such as kβ . Taking the functional dependence to be 
fractional linear in kβ , all but one of the four parameters in the fractional linear 
dependence is determined in an obvious manner by the boundary conditions at 

kz Z= , the edges of the mixing zone. In this way the closure is mainly driven by 
directly observable data, a feature which the authors regard as highly desirable. In 
fact the edges kZ  are determined by the buoyancy equation (5.1). The closure 

relation for *p  is set in terms of the ratio of densities Glimm et al. (1998) and 
Glimm & Jin (2001). We now discuss the *v  closure relation, i.e. the equation for 
the fractional linear definition of v

kµ  in 

 *
2 1 1 2
v vv v vµ µ= + . (6.2) 

 
 
 After inserting obvious mixing zone boundary constraints, and our assumed form 
 v

kµ , we have 
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,     ,
( )

x k
k x

k k k

x v p
c t
β

µ
β β

= =
+

. (6.3) 

. v
kc  was interpreted as a ratio of the volumetric growth rates for the mixing zone 

for the two phases, '| / |v
k k kc V V= , in the incompressible case, Glimm et al. (1998 

and 1999). Here /k kV Z t= ∂ ∂ . As is observed below, both the convex sum 
property (6.2) and the fractional linear form (6.3) for the convex coefficients can 
be derived from the primitive equations, and are thus independent of closure 
assumptions.  Closure thus is a specification of v

kc . 
 
 The volumetric mixing rate constraint determining the *v  closure has been 

extended to the fully compressible case Glimm & Jin (2001). Because of 
compressibility, new terms enter into the phase volume growth rates, including 
the compressibility of  the two phases. In dimensionless terms, this influence 
enters as a ratio of the sound speeds for the two fluids in the weakly compressible 
limit. We start with an exact identity for v

kc , valid for the fully compressible two 
fluid equations, derived in the absence of any closure assumptions at all. Note that 



the interface equation, the convex sum property for *v  and the fractional linear 
form for v

kµ  are all derived in this equation independently of closure assumptions. 
We have 
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                                    (6.4) 

is the ratio of logarithmic rates of volume creation for the two species, 
where / / /k kD Dt t v t= ∂ ∂ + ∂ ∂  is the convective derivative defined by the velocity 

kv . Then the closure (absence of internal length scales) can be interpreted as an 

equation for v
kc , namely 

 0
v
kc
z

∂
=

∂
. (6.5)

 
It is of interest to analyze the *v  closure in the weakly compressible perturbative 
analysis. There we find that the incompressible pressures, the ratios of the 
compressible sound speeds, the second order contribution to the phase volume 
expansion ratio | / |k kV V ′ , and the second order perturbation term in the expansion 

of v
kc  are linked by a newly derived equation (Jin (2001), Glimm & Jin (2001)). 

This equation removes an indeterminancy in the incompressible equations, 
previously not understood, and shows that the two phase incompressible 
equations, in contrast to the single phase case, remember the compressible fluids 
from which they are derived. We first reformulate (6.5) as 
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∫

∫
. (6.6) 

The formula (6.6) can now be expanded perturbatively in powers of the Mach 
number, and the second order term in this expansion includes the incompressible 
pressure. The resulting equation is the desired new equation for the 
incompressible pressure. See Jin (2001) and Glimm & Jin (2001). 

 
On the basis of the above analysis, we are able to link the phenomenological drag 
coefficients in the buoyancy drag equation for the edge motion with fundamental 
laws of physics. Newton’s law of acceleration, applied at the edge of the mixing 
zone is equivalent to the momentum equation, evaluated at this location. The 
equations can be highly simplified in this evaluation (Glimm et al. (1999)) and 
resemble  buoyancy drag equations (5.1). In fact, they are different, due to the 
absence of phenomenological quantities. Thus the added mass and the drag are 
replaced by exact quantities, which, however, are not convenient to evaluate. 
Specifically they relate to the pressure difference between the phases and the 



gradient of the pressure difference. A closed form solution for the pressure 
equation in the incompressible limit, to be published, reveals terms which can be 
readily identified as inertial terms (added mass), fundamentally exact drag terms 
(depending on velocity differences) and pressure difference terms (interpreted as 
phenomenological corrections to the drag terms). Thus we see that the buoyancy 
drag equations can be obtained via a closure relation which expresses the added 
mass and drag as pressure difference terms in the exact momentum equation and 
relates these to quantities known in the buoyancy drag equation, namely lengths, 
velocities and accelerations. 
 
7  Effective diffusion and Reynolds stress 
Reduced  multiphase mixture models have fewer equations and fewer variables. 
They are logically derived from more complete models. Here we derive a single 
velocity, single temperature model from the chunk mix model of Sect. 6, 
following Cheng et al. (2002b). For models with a single velocity, this velocity 
will express mean fluid flow, and cannot drive the mixture process, which is then 
modeled as a diffusion process. The point is to determine the (time and spatially 
dependent) interspecies diffusivity, which governs the mixing rates diffusivity. 
Assuming this to be a function of the volume fraction kβ , Alon & Shvarts (1996) 

propose diffusion proportional to 1 2(1 )k kβ β β β− = . We find corrections to this 
form which reflect the deviation of the volume fraction from being a linear 
function of z. 
 
The key to the computation of the diffusivity is a determination of entrainment 
time. For a given parcel of fluid k  at a given space time location within the 
mixing zone, the entrainment time is defined to be (the earlier) time at which that 
parcel entered the mixing zone. Given the velocity history of the two phases, 
available in closed form (in terms of the edge positions kZ ), one integrates 
backward in time until the moving edge '( )kZ s  is encountered. This motion is 
then interpreted as a diffusion process, and the exact value of diffusion which 
duplicates this motion is determined. For RT mixing, the diffusivity can be 
determined in closed form, while for RM mixing, the diffusivity is solved via an 
approximate closed form expression, and also by integration of an ordinary 
differential equation. For the general case, the solution is given up to a quadrature. 
For the RT case the closed form expression for the diffusivity D  is 

 
2 2

2 2 3 2 2 1 1 2 2
1 2 1 2 3 3

2D A g t β α β αβ β α α
α α

 
= + 

 
 

where 
 1 1 2 2α α β α β= + . 
Note that the formula is not symmetric between 1β  and 2β  since 1 2α α≠  for 

0A > . The factor in the square brackets is the correction to the formula of Alon 
& Shvartz (1996). This factor reflects the lack of symmetry between the two 
phases and is especially significant for Richtmyer-Meshkov mixing. See Fig.  5. 



The dominant component zzR  of the Reynolds stress tensor is also determined in 
Cheng et al. (2002b). 

  
  [Figure 5 goes here] 
 
8  Conclusions 
Theory has been shown to be remarkably successful for the study of turbulent mix. 
Zero parameter models of the compressible mixing zone have been derived from 
totally theoretical considerations, and match experiment quantitatively. Both 
mixing zone edges and the mixing zone interior flow variables have been modeled. 
The latter are described by a new set of averaged equations, with several pleasant 
properties, including stability at a hyperbolic level of time propagation, and multi 
species thermodynamics. Simpler models, such as turbulent diffusive mixing have 
been derived from these equations. Details of the weakly compressible limit for 
our averaged equations have been solved in closed form. 
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TABLES 
 
 Table 1. Bubble height to width ratios in experiments and models. 
 
 Cheng et al. (2002a): Model   3 
 Oron et al. (2001): Model   1 to 1.5 
 Smeeton and Youngs (1987): Experiment 3.3 
 Dimonte and Schneider (1996): Experiment   2 – 4 



FIGURE CAPTIONS 
 
             Figure 1. The ratio /s bα α is determined by a COM assumption and 
compared to the experimental data of Dimonte et al. (2000) and to a power law fit. 
The power law is unphysical for 1A = , and thus this fit fails to reproduce the 
experimental data for large A . Our values for /s bα α  agree with the experimental 
data for all values of A . 
 
             Figure 2. The exponent sθ  for RM mixing. The solid and dotted lines are 
the predictions of Cheng et al. (2000) for 0.05bα =  and for 0.06bα =  
respectively. The solid dots are LEM experiments of Dimonte & Schneider (1996). 
 

Figure 3. Dependence of the exact solution of (4.1) on variation of the 
initial data 0bZ . The best fitting value for the data of Smeeton and Youngs (1987) 
is 0 0.75bZ =  for their experiment number 101.  
 

Figure 4. Volume fraction of the light fluid, showing the incompressible 
solution, a perturbation term, and the compressible solution computed 
perturbatively through first order. 
 
            Figure 5. The diffusion coefficient D across the mixing layer in RT mixing. 
The dash-dotted line is for 0.5A = , 2 0.07α =  and the solid line is for 0.96A = , 

2 0.18α = . 
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